Os campos de estudo podem também ser categorizados quanto:
- ao assunto: em geral de acordo com a região do espaço (ex. Astronomia galáctica) ou aos problemas por resolver (tais como formação das estrelas ou cosmologia).
- à forma como se obtém a informação (essencialmente, que faixa do espectro eletromagnético é usada).
Astronomia observacional
Na astronomia, a principal forma de obter informação é através da detecção e análise da luz visível ou outras regiões da radiação eletromagnética. Mas a informação é adquirida também por raios cósmicos, neutrinos, e, no futuro próximo, ondas gravitacionais (veja LIGO e LISA).
Uma divisão tradicional da astronomia é dada pela faixa do espectro eletromagnético observado. Algumas partes do espectro podem ser observadas da superfície da Terra, enquanto outras partes só são observáveis de grandes altitudes ou no espaço.
Radioastronomia
Ver artigo principal: Radioastronomia
A radioastronomia estuda a radiação com comprimento de onda maior que aproximadamente 1 milímetro. A radioastronomia é diferente da maioria das outras formas de astronomia observacional pelo fato de as ondas de rádio observáveis poderem ser tratadas como ondas ao invés de fótons discretos. Com isso, é relativamente mais fácil de medir a amplitude e a fase (onda)|fase das ondas de rádio.
Apesar de algumas ondas de rádio serem produzidas por objetos astronômicos na forma de radiação térmica, a maior parte das emissões de rádio que são observadas da Terra são vistas na forma de radiação síncrotron, que é produzida quando elétrons ou outras partículas eletricamente carregadas descrevem uma trajetória curva em um campo magnético. Adicionalmente, diversas linhas espectrais produzidas por gás interestelar, notadamente a linha espectral do hidrogênio de 21 cm, são observáveis no comprimento de onda de rádio.
Uma grande variedade de objetos são observáveis no comprimento de onda de rádio, incluindo supernovas, gás interestelar, pulsares e núcleos de galáxias ativas.
Astronomia infravermelha
Ver artigo principal: Astronomia infravermelha
O espectro infravermelho é útil para estudar objetos que são muito frios para emitir luz visível, como os planetas e discos circunstrelares. Comprimentos de onda infravermelha maior podem também penetrar nuvens de poeira que bloqueiam a luz visível, permitindo a observação de estrelas jovens em nuvens moleculares e o centro de galáxias. Algumas moléculas radiam fortemente no infravermelho, e isso pode ser usado para estudar a química no espaço, assim como detectar água em cometas.
Astronomia óptica
Ver artigo principal: Astronomia óptica
Astronomia ultravioleta
Ver artigo principal: Astronomia ultravioleta
A astronomia ultravioleta é mais utilizada para o estudo da radiação térmica e linhas de emissão espectral de estrelas azul quente (Estrela OB) que são muito brilhantes nessa banda de onda. Isso inclui estrelas azuis em outras galáxias, que têm sido alvos de várias pesquisas nesta área. Outros objetos normalmente observados incluem a nebulosa planetária, remanescente de supernova, e núcleos de galáxias ativas.Entretanto, a luz ultravioleta é facilmente absorvida pela poeira interestelar, e as medições da luz ultravioleta desses objetos precisam ser corrigidas.
Astronomia de raios-X
Ver artigo principal: Astronomia de raios-X
Fontes de raio-X notáveis incluem binário de raio X, pulsares, remanescentes de supernovas, galáxias elípticas, aglomerados de galáxias e núcleos galácticos ativos.
Astronomia de raios gama
Ver artigo principal: Astronomia de raios gama
A maioria das fontes emissoras de raio gama são na verdade Erupções de raios gama, objetos que produzem radiação gama apenas por poucos milisegundos a até milhares de segundos antes de desaparecerem. Apenas 10% das fontes de raio gama são fontes não-transendentes, incluindo pulsares, estrelas de nêutrons, e candidatos a buracos negros como núcleos galácticos ativos.
Campos não baseados no espectro eletromagnético
Além da radiação eletromagnética outras coisas podem ser observadas da Terra que se originam de grandes distâncias.Na Astronomia de neutrinos, astrônomos usam laboratórios especiais subterrâneos como o SAGE, GALLEX e Kamioka II/III para detectar neutrinos. Esses neutrinos se originam principalmente do Sol, mas também de supernovas.
Raios cósmicos consistindo de partículas de energia muito elevada podem ser observadas chocando-se com a atmosfera da terra. Além disso, no futuro detectores de neutrino poderão ser sensíveis aos neutrinos produzidos quando raios cósmicos atingem a atmosfera da Terra.
Foram construídos alguns observatórios de ondas gravitacionais como o Laser Interferometer Gravitational Observatory (LIGO) mas as ondas gravitacionais são extremamente difíceis de detectar.
A astronomia planetária tem se beneficiado da observação direta pelos foguetes espaciais e amostras no retorno das missões. Essas missões incluem fly-by missions com sensores remotos; veículos de aterrissagem que podem realizar experimentos no material da superfície; missões que permitem ver remotamente material enterrado; e missões de amostra que permitem um exame laboratorial direto.
Astrometria e mecânica celestial
Um dos campos mais antigos da astronomia e de todas as ciências, é a medição da posição dos objetos celestiais. Historicamente, o conhecimento preciso da posição do Sol, Lua, planetas e estrelas era essencial para a navegação celestial.
A cuidadosa medição da posição dos planetas levou a um sólido entendimento das perturbações gravitacionais, e a capacidade de determinar as posições passadas e futuras dos planetas com uma grande precisão, um campo conhecido como mecânica celestial. Mais recentemente, o monitoramento de Objectos Próximos da Terra vai permitir a predição de encontros próximos, e possivelmente colisões, com a Terra.
A medição do paralaxe estelar de estrelas próximas provêm uma linha de base fundamental para a medição de distâncias na astronomia que é usada para medir a escala do universo. Medições paralaxe de estrelas próximas provêm uma linha de base absoluta para as propriedades de estrelas mais distantes, porque suas propriedades podem ser comparadas. A medição da velocidade radia e o movimento próprio mostra a cinemática desses sistemas através da Via Láctea. Resultados astronômicos também são usados para medir a distribuição de matéria escura na galáxia.
Durante a década de 1990, as técnicas de astrometria para medir as stellar wobble foram usados para detectar planetas extrasolares orbitando a estrelas próximas.
http://pt.wikipedia.org/wiki/Astronomia
Olá, Tainá!!!!
ResponderExcluirParabéns, pela ótima postagem e também, por esse dinamismo em número de lançamentos de posts!!!!
Gostaria, que você também, começasse a postar trabalhos seus!!!! Podem ser... tabelas de tipos e valores de aparelhos e instrumentos usados na astronomia, softwares e métodos e técnicas para se ser um astrônomo, mesmo amador!!!!
Um abraço!!!!